MALINENI LAKSHMAIAH WOMEN'S ENGINEERING COLLEGE

(AUTONOMOUS)

Department of Science & Humanities

I B.Tech I Semester Regular Examinations, FEBRUARY- 2024

LINEAR ALGEBRA & CALCULUS

Branches: ECE/CSE/IT/AI&ML/DS/AI&DS

MR23

Regd.No.					

Time: 3 hours

Max. Marks: 70

Question Paper Consists of **Part-A and Part-B** Answer **ALL** the Questions in **Part-A and Part-B**

		PART-A $(10 \times 2M = 20M)$	CO	BTL	Marks
1	a	Find the value of k such that the rank of $\begin{bmatrix} 1 & 2 & 3 \\ 2 & k & 7 \\ 3 & 6 & 10 \end{bmatrix}$ is 2	1	1	2M
	b	Are the systems of equations $x + y + z = 6$, $x + 2y + 2z = 14$, $x + 4y + 7z = 30$ consistent ?	1	1	2M
	c	If the Eigen values of A are -1,1,3 then find the Eigen values of Adj A.	2	1	2M
	d	Write the matrix form of the Quadratic form $x^2 + 2y^2 + 2z^2 - 4xy + 6zx + 10yz$.	2	1	2M
	e	State Lagrange's Mean Value Theorem.	3	2	2M
	f	What is the Maclaurin series expansion of the function $f(x) = \sin x$	3	1	2M
	g	Evaluate $\frac{\partial Z}{\partial x}$ and $\frac{\partial Z}{\partial y}$ if $Z = \log(x^2 + y^2)$.	4	5	2M
	h	If $u = x^2 + y^2$, $x = at^2$, $y = 2at$ then find $\frac{du}{dt}$	4	1	2M
	i	Find $\iint x^2 dx dy$ over the region bounded by hyperbola $xy = 4, y = 0, x = 1, x = 4$.	5	1	2M
	j	0, $x = 1, x = 4$. Evaluate $\int_0^1 \int_1^2 \int_2^3 xyz dx dy dz$.	5	5	2M
		PART-B(5 X 10M = 50M)			
2	a	PART-B(5 X 10M = 50M)Verify Cauchy-Binet formula for $A = \begin{bmatrix} 1 & 3 & 5 & 6 \\ -3 & 5 & 7 & 9 \end{bmatrix}$ and $B = \begin{bmatrix} 2 & 3 \\ 4 & 5 \\ 7 & 8 \\ -9 & 2 \end{bmatrix}$	1	2	5M
	b	Find the values ' a' of ' b' such that the system of equations $x + y + z = 3$, $x + 2y + 2z = 6$, $x + ay + 3z = b$ have (i) No solution (ii) a unique solution (iii) infinite number of solutions.	1	1	5M
		Or			

3	a	Solve the system of equations $10x - 7y + 3z + 5w = 6$, $-6x + 8y - z - 4w = 5$, $3x + y + 4z + 11w = 2$, $5x - 9y - 2z + 4w = 7$ by using Gauss elimination method.	1	3	5M
	b	Solve the system of equations using Gauss-Seidel method 20x + y - 2z = 17, 3x + 20y - z = -18, 2x + 3y + 20z = 25	1	3	5M
	a	Find the Eigen values and Eigen vectors of the matrix $A = \begin{bmatrix} 5 & -2 & 0 \\ -2 & 6 & 2 \\ 0 & 2 & 7 \end{bmatrix}$	2	1	5M
4 b	Verify Cayley-Hamilton theorem for the matrix $A = \begin{bmatrix} 3 & 1 & 2 \\ 2 & -3 & 1 \\ 1 & 2 & 1 \end{bmatrix}$ and find A^{-1}	٤	2	5M	
		Or			
5	a	Reduce the quadratic form $3x^2 + 5y^2 + 3z^2 - 2xy + 2zx - 2yz$ to the canonical form by orthogonal transformations and find the rank, index, signature and nature of the quadratic form.	2	3	10M
	a	Verify Rolle's mean value theorem for the function	3	2	5M
6	b	$f(x) = ((x - a)^m (x - b)^n in[a, b],$ where <i>m</i> and <i>n</i> are positive integers. Expand $f(x) = \log (1 + x)$ in powers of by using Maclaurin's series and evaluate log 1.1	3	3	5M
		Or			
	a	If $f(x) = e^x$ and $g(x) = e^{-x}$ in $[a, b]$ then show that <i>c</i> is the average of <i>a</i> and <i>b</i> using Cauchy's mean value theorem.	3	2	5M
7	b	Find Taylor's series expansion of the $f(x) = cosx$ about $x = \frac{\pi}{3}$	3	1	
8	a	If $U = \log(x^3 + y^3 + z^3 - 3xyz)$, then prove that $\left(\frac{\partial}{\partial x} + \frac{\partial}{\partial y} + \frac{\partial}{\partial z}\right)^2 U = \frac{-9}{(x + y + Z)^2}$	4	5	5M
	b	If $x = \sqrt{vw}$, $y = \sqrt{wu}$, $z = \sqrt{uv}$ and $u = r \sin \theta \cos \phi$, $v = r \sin \theta \sin \phi$, $z = r \cos \theta$, then find $\frac{\partial(x,y,z)}{\partial(r,\theta,\phi)}$.	4	1	5M
		Or			
9	a	Expand $f(x, y) = \tan\left(\frac{y}{x}\right)$ as a Taylor's series at (1,1).Hence compute $f(1.1,0.9)$.	4	3	5M
	b	Find the minimum value of $x^2 + y^2 + z^2$ given that $x + y + z = 3a$.	4	1	5M
a	a	Evaluate $\int_{0}^{1} \int_{0}^{1-x} \int_{0}^{1-x-y} dx dy dz.$	5	5	5M
10	b	Find the area of the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ in the first quadrant.	5	1	5M
		Or			
	a	Evaluate $\int_{0}^{a} \int_{0}^{\sqrt{a^{2}-x^{2}}} \sqrt{a^{2}-x^{2}-y^{2}} dy dx.$	5	5	5M
11					
